Persistent left superior vena cava
Kamil Tyrak, Jakub Hołda, Mateusz K Hołda, Mateusz Koziej, Katarzyna Piątek, Wiesława Klimek-Piotrowska

Abstract
Persistent left superior vena cava (PLSVC) is the most common congenital malformation of thoracic venous return and is present in 0.3 to 0.5% of individuals in the general population. This heart specimen was dissected from a 35-year-old male cadaver whose cause of death was determined as non-cardiac. The heart was examined and we found a PLSVC draining into the coronary sinus. The right superior vena cava was present with a small-diameter ostium. An anomalous pulmonary vein pattern was observed; there was a common trunk to the left superior and left inferior pulmonary veins (diameter 17.8 mm) and an additional middle right pulmonary vein (diameter 2.7 mm) with two classic right pulmonary veins. The PLSVC draining into the coronary sinus had led to its enlargement, which could have altered the cardiac hemodynamics by significantly reducing the size of the left atrium and impeding its outflow via the mitral valve.

Keywords: coronary sinus, persistent left superior vena cava, right atrium, left atrium

Case report
This heart specimen was dissected from a 35-year-old male cadaver (BMI 29.9 kg/m²) whose cause of death was determined
as non-cardiac during a routine forensic autopsy. The heart weight was 613 g.

After a month of fixation in 10% buffered formaldehyde, the heart was examined and it revealed PLSVC drains into the CS (Fig. 1). The mediolateral (ML) and anteroposterior (AP) diameters of the PLSVC, measured 1 cm above its connection with the CS, were 12.2 and 11.5 mm, respectively. The mean thickness of the LSVC was 0.6 mm. Further examination revealed an enormous coronary sinus with a funnel-shaped expansion at the PLSVC orifice. The CS diameter, measured in the middle of the structure, was greatly enlarged (15.85 mm). The CS ostium was also enlarged, measuring 17.2 mm in diameter.

The CS ostium valve (Thebesian valve) was absent (Fig. 2). The great cardiac vein had a relatively small ostium (diameter 2.3 mm) and lacked a Vieussens valve (Fig. 3). Other venous valves were also absent within the ostia of the middle cardiac vein and posterior vein of the left ventricle (diameter of veins < 1 mm). The small cardiac vein was absent. The length of the CS, as measured from the ostium of the great cardiac vein to the CS orifice, was 43.7 mm. The right superior vena cava was present with a small ostium diameter (ML = 14.3 mm; AP = 14.9 mm).

Distortions of the atrial dimensions were noted; reduction in the AP length of the left atrium and enlargement of the right atrium. The dimensions of the atrioventricular rings were also measured; mitral ring (AP = 26.5 mm; ML = 12.4 mm; area = 2.6 cm²) and tricuspid ring (AP = 31.4 mm; ML = 21.6 mm; area = 5.3 cm²). The inferior vena cava ostium diameters were AP = 28.6 mm and ML = 33.8 mm. The Eustachian valve was present (Fig. 2).

An anomaly of the pulmonary vein pattern was observed; there was a common trunk of the left superior and left inferior pulmonary veins (diameter 17.8 mm) and an additional middle right pulmonary vein (diameter 2.7 mm) with two classic right pulmonary veins (Fig. 4). The patent foramen ovale was absent and a left-sided septal pouch was observed. Fig. 5 shows how measurements were performed.
Discussion

During embryogenesis, the sinus venosus consists of the right and left horns. Each receives blood from the common cardinal, vitelline and umbilical veins. During gestation, the left horn, after obliteration of the above veins, evolves into the coronary sinus and oblique vein of the left atrium, while the right becomes incorporated into the right atrium. The right common cardinal vein and the proximal part of the right anterior cardinal vein build the right superior vena cava. The left anterior cardinal vein changes into the internal jugular vein. The presence of the left anterior cardinal vein and obliteration of the left common cardinal vein leads to the formation of the left superior vena cava, which drains into the right atrium through the coronary sinus.12,13

The presence of a PLSVC has a significant influence on the anatomy of the heart and venous system. Although our autopsy study revealed enlargement of the heart chambers, the largest change concerned the CS. We compared the dimensions of the CS and selected heart structures from this case with mean dimensions obtained by measuring nearly 200 structurally normal hearts (23% female; mean age 46.7 ± 19.1 years) without PLSVC in our previous studies.14,15 The diameter of the CS described in this case report (17.17 mm) was the largest of all previous measurements (mean 9.2 ± 2.7 mm). The existence of a common left pulmonary vein trunk may also have been the result of the PLSVC, which limited the free space in the area where the PLSVC drains into the left atrium, right-to-left cardiac shunt and impediment of its outflow via the mitral valve, as presented in this case.

A PLSVC often coexists with other congenital heart defects, therefore early detection of this anomaly may be very important for the future outcome of the patient.12 Isolated PLSVC without a superior vena cava is very rare (0.1% of the population).22,23 In the majority of known cases, the CS is unroofed, which causes a right-to-left shunt of blood.17 In 10 to 20% of patients, the PLSVC drains into the left atrium, which may be associated with more dangerous haemodynamic complications. It is also worth mentioning that the incidence of defects in foetuses is higher than in the general population. This is due to the double mechanism: anatomical anomalies may cause spontaneous miscarriage, as well as the existence of PLSVC along with other heart defects may lead to premature death.12

Although diagnosis is not very complicated, the anomaly often remains unnoticed, especially when it is clinically inaudible. PLSVC is very often discovered accidentally during invasive cardiac procedures, mostly during routine left-sided right-heart catheterisation, surgical procedures or insertion of a venous central line.12–14 The presence of PLSVC can result in left-sided heart obstruction, which can cause a decrease in heart compliance and as a result, lower stroke volume.24

On chest X-ray, PLSVC can be seen as a widened shadow of the aorta with a visible venous half-moon shadow from the left side of the aortic arch to the middle of the left clavicle. Basic diagnostic methods include transoesophageal and transthoracic echocardiography. Other commonly used methods comprise conventional contrast venography, computed tomography and magnetic resonance venography.25 Prenatal diagnosis is based on echocardiography and mostly reveals an enlargement of the CS.22

Conclusions

We present a case in which the PLSVC significantly affected anatomical relationships and dimensions of the heart. The PLSVC draining into the CS led to its enlargement and to atrophy of the Vieuessen, Thebesian and other heart vein valves. The presence of a PLSVC significantly affected anatomical relationships and dimensions of the heart. The PLSVC draining into the CS led to its enlargement and to atrophy of the Vieuessen, Thebesian and other heart vein valves. The presence of a PLSVC significantly affected anatomical relationships and dimensions of the heart. The PLSVC draining into the CS led to its enlargement and to atrophy of the Vieuessen, Thebesian and other heart vein valves. The presence of a

References


